Cost-Effectiveness of Perchlorate Drinking Water Treatment in California

Richard B. Belzer, PhD Regulatory Checkbook Mt. Vernon, VA

Disclosures for this Presentation

- What is Regulatory Checkbook?
 - Nonpartisan, nonprofit, independent
 - Mission: Promote high-quality, policy-neutral science and economics in regulatory decision making
- No part of this presentation was sponsored, funded or reviewed by the Perchlorate Study Group or any federal agency.
- Nothing in this presentation should be construed as representing the views of the Perchlorate Study Group or any federal agency.

Procedures for Setting the California MCL

- Selects possible draft MCL concentrations for evaluation
- Evaluates the occurrence data
- Evaluates available analytical methods and estimates monitoring costs at various draft MCL concentrations
- Estimates population exposures at various draft MCL concentrations of the chemical
- Identifies best available technologies for treatment
- Estimates treatment costs at the possible draft MCL concentrations
- Reviews the costs and associated health benefits (health risk reductions) that result from treatment at the possible draft MCL concentrations
- Selects an MCL for proposal from the possible draft MCL concentrations considered above

Source: California Department of Health Services

Procedures for Setting the MCL Kennedy/Jenks Consultants Report

- Selects possible draft MCL concentrations for evaluation
- Evaluates the occurrence data
- Evaluates available analytical methods and estimates monitoring costs at various draft MCL concentrations
- Estimates population exposures at various draft MCL concentrations of the chemical
- Identifies best available technologies for treatment
- Estimates treatment costs at the possible draft MCL concentrations
- Reviews the costs and associated health benefits (health risk reductions) that result from treatment at the possible draft MCL concentrations
- Selects an MCL for proposal from the possible draft MCL concentrations considered above

Source: California Department of Health Services

Procedures for Setting the MCL

This Presentation

- Selects possible draft MCL concentrations for evaluation
- Evaluates the occurrence data
- Evaluates available analytical methods and estimates monitoring costs at various draft MCL concentrations
- Estimates population exposures at various draft MCL concentrations of the chemical
- Identifies best available technologies for treatment
- Estimates treatment costs at the possible draft MCL concentrations
- Reviews the costs and associated health benefits (health risk reductions) that result from treatment at the possible draft MCL concentrations
- Selects an MCL for proposal from the possible draft MCL concentrations considered above

Source: California Department of Health Services

 Estimate monthly costs if spread across local ratepayers.

- Estimate monthly costs if spread across local ratepayers.
- Identify 'potential beneficiaries'.
 - Health risk is controversial; National Academy review near completion will reduce uncertainty.
 - Subpopulation of concern is the developing baby.
 - No appreciable risk with sufficient iodine nutrition.
 - I nutrition generally adequate, enhanced by prenatal vitamins.
 - 'Potential beneficiary' defined: Developing baby whose mother does not take prenatal vitamins.

- Estimate monthly costs if spread across local ratepayers.
- Identify 'potential beneficiaries'.
 - Why the qualifier 'potential'?
 - Iodine deficiency is rare or nonexistent in the US.
 - Without iodine deficiency, objectively measured health benefits are likely to be zero.
 - Subjective benefits (e.g., 'peace of mind') are excluded.

- Estimate monthly costs if spread across local ratepayers.
- Identify 'potential beneficiaries'.
- Estimate cost-effectiveness per 'potential beneficiary'.

- Estimate monthly costs if spread across local ratepayers.
- Identify 'potential beneficiaries'.
- Estimate cost-effectiveness per 'potential beneficiary'.
- Compare cost-effectiveness with an alternative that offers unambiguously greater public health benefits.

Generally, the C-E ratio is monetized cost divided by non-monetized health benefits.

- Generally, the C-E ratio is monetized cost divided by non-monetized health benefits.
 - Cost-effectiveness analysis is often preferred where health benefits are hard to monetize.
 - Cost-effectiveness analysis is routinely used to evaluate medical interventions.

- Generally, the C-E ratio is monetized cost divided by non-monetized health benefits.
- In this analysis, the C-E ratio is monetized cost divided by potential number of beneficiaries.

- Generally, the C-E ratio is monetized cost divided by non-monetized health benefits.
- In this analysis, the C-E ratio is monetized cost divided by potential number of beneficiaries. Why?
 - The existence of <u>any</u> health benefit is scientifically controversial; the NAS report may resolve this.
 - If benefits exist, their units will be controversial.

- Generally, the C-E ratio is monetized cost divided by non-monetized health benefits.
- In this analysis, the C-E ratio is monetized cost divided by potential number of beneficiaries.
- Lower values are always preferred to higher values.

Summary of K/JC Results by Design Case

	150 gpm	300 gpm	600 gpm	1,000 gpm	2,000 gpm	5,000 gpm
Average Annual Cost (\$K)	\$92	\$136	\$220	\$351	\$619	\$1,019
Average Annual Prod' n (AF)	54	188	349	743	1,351	2,286

Costs of Alternative MCLs

- Treatment technology is 'lumpy'.
 - If source water < MCL, no treatment.
 - If source water > MCL, treatment.
- If treatment is required, cost does not depend on the choice of MCL.
- If treatment is not required, costeffectiveness is irrelevant.
- This analysis explores the cost-effectiveness assuming treatment is required.

Estimated Population Served by Design Case

	150 gpm	300 gpm	600 gpm	1,000 gpm	2,000 gpm	5,000 gpm
Method #1	1,550	3,100	6,199	10,332	20,664	51,660
Method #2	1,544	5,376	9,979	21,245	38,630	65,365
Ratio	1.00	1.73	1.61	2.06	1.87	1.27
Average	1,547	4,238	8,089	15,789	29,647	58,513

Derived from design case capacity.
 Derived from estimated annual water production.

³ Annual household consumption: 146,000 gallons (AwwaRF).

Small Apparent Increase in Monthly Household Water Bills

Potential Beneficiaries Are a Small Subset of the Population Served

	150 gpm	300 gpm	600 gpm	1,000 gpm	2,000 gpm	5,000 gpm
Pop' n Served	1,547	4,238	8,089	15,789	29,647	58,513
우 Pop' n ¹ (50.9%)	787	2,157	4,117	8,036	15,090	29,783
Births ¹ (2.7%)	21	58	111	217	407	804
No Prenatal Vitamins ² (25%)	5	15	28	55	104	204

¹US Census Bureau; US Census Bureau [Live Births/♀ Population = 2.7%].

³ HNANES III.

According to WHO, US is iodine replete.

- According to WHO, US is iodine replete.
- The Federal NHANES survey supports this conclusion.
 - Confirms that the US population is iodine replete.
 - Cannot be used to estimate the incidence of iodine deficiency.
 - Cannot address whether specific individuals are iodine deficient.

- According to WHO, US is iodine replete.
- The Federal NHANES survey supports this conclusion.
- It's hard for an individual to be iodine deficient.

- According to WHO, US is iodine replete.
- The Federal NHANES survey supports this conclusion.
- It's hard for an individual to be iodine deficient.
 - Avoid iodine-rich foods (e.g., meat, fish, dairy, eggs),
 additives (e.g., carrageen, alginate, FD&C R3), iodized salt
 - Avoid supplements containing iodine (e.g., kelp, prenatal multivitamins)
 - Consume large amounts of iodine-blocking foods (e.g., cruciferous vegetables, spinach)

Cost-Effectiveness Gets Worse as the Incidence of Iodine Deficiency Declines

- Lower values are always preferred to higher values.
 - Cost-effectiveness ratio is <u>lowest</u> if <u>all developing</u> <u>babies</u> are iodine <u>deficient</u>.
 - Cost-effectiveness ratio is <u>highest</u> if <u>all developing</u> <u>babies</u> are iodine <u>sufficient</u>.

Cost-Effectiveness Gets Worse as the Incidence of Iodine Deficiency Declines

- Lower values are always preferred to higher values.
- Because the population is iodine replete, incidence is expected to be very low.

Cost-Effectiveness Gets Worse as the Incidence of Iodine Deficiency Declines

- Lower values are always preferred to higher values.
- Because the population is iodine replete, incidence is expected to be very low.
- Actual incidence is unknown, so this analysis shows results for all scenarios ranging from 0% to 100% incidence.

Annual Perchlorate Treatment Cost per Potential Beneficiary by Design Case

Annual Perchlorate Treatment Cost per Potential Beneficiary by Design Case

Percent of 'Potential Beneficaries' Who Are Iodine Deficient

Cost of an Unambiguously Superior Alternative

- Supply prenatal vitamins.
 - 300 mcg iodine = 200% recommended daily value
 - < \$25 for 120 capsules (2 months' supply)</p>
 - \$12 per month, \$144 per year

Cost of an Unambiguously Superior Alternative

- Supply prenatal vitamins.
- Why is this alternative unambiguously superior?
 - It ensures that developing babies get adequate iodine nutrition.
 - It renders moot the uncertainty over low-level perchlorate risk.
 - It achieves other important health benefits (e.g., folic acid reduces risk of neural tube defects)

Cost-Effectiveness of Perchlorate Treatment v. Vitamin Supplementation*

^{*12} months' supply of prenatal vitamins with iodine for all pregnant women.

Water treatment*

\$5k-17k	100% ID
\$500k-1,700k	1% ID
\$5,000k-17,000k	0.1% ID

^{*} Rounded to 2 significant figures

Water treatment*

\$5k-17k	100% ID
\$500k-1,700k	1% ID
\$5,000k-17,000k	0.1% ID

Prenatal vitamins**

\$576	100% ID
\$57,600	1% ID
\$576,000	0.1% ID

^{*} Rounded to 2 significant figures; *** Rounded to 3 significant figures

 Providing prenatal vitamins with iodine to ALL pregnant women is 10-30 times more costeffective than water treatment.

^{*} Rounded to 2 significant figures; *** Rounded to 3 significant figures

- Providing prenatal vitamins with iodine to ALL pregnant women is 10-30 times more cost-effective than water treatment.
- Implications
 - 10-30 times more babies protected at same cost.
 - Same number of babies protected at 3-10% of the cost.

^{*} Rounded to 2 significant figures; *** Rounded to 3 significant figures

Conclusions

Water treatment

- Looks reasonable only if subsidized by non-beneficiaries.
- Does not address underlying iodine deficiency, if it exists.

Conclusions

- Water treatment
 - Looks reasonable only if subsidized by non-beneficiaries.
 - Does not address underlying iodine deficiency, if it exists.
- Prenatal vitamins offer significant public health advantages
 - Prevent fetal iodine deficiency.
 - Prevent other developmental health risks.

Conclusions

- Water treatment...
 - Looks reasonable only if subsidized by non-beneficiaries.
 - Does not address underlying iodine deficiency, if it exists.
- Prenatal vitamins offer significant public health advantages.
 - Prevent fetal iodine deficiency.
 - Prevent other developmental health risks.
- 10-30 times more cost-effective
 - Same benefits to babies at 3-10% of the cost.
 - 10-30 times as many babies protected for the same cost.

Questions?

Richard B. Belzer, PhD
Regulatory Checkbook
(703) 780-1850 v
(202) 476-1626 f
Belzer@RegulatoryCheckbook.Org